Diversity in Microwave Links

Diversity in Microwave Links

Example of a 1+0 Unprotected Microwave Link
Example of a 1+0 Unprotected Microwave Link

In terrestrial microwave links, a diversity scheme refers to a method for improving the reliability of a message signal by using two or more communication channels with different characteristics. Diversity plays an important role in combatting fading and co-channel interference and avoiding error bursts. It is based on the fact that individual channels experience different levels of fading and interference. Multiple versions of the same signal may be transmitted and/or received and combined in the receiver. Alternatively, a redundant forward error correction code may be added and different parts of the message transmitted over different channels. Diversity techniques may exploit the multipath propagation, resulting in a diversity gain, often measured indecibels.

The following classes of diversity schemes are typical in Terrestrial Microwave Links:

Diversity is important in Long Haul Microwave Backhaul in Cellular Networks
Diversity is important in Long Haul Microwave Backhaul in Cellular Networks
  • Unprotected:  Microwave links where there is no diversity or protection are classified as Unprotected and also as 1+0.  There is one set of equipment installed, and no diversity or backup
  • Hot Standby: Two sets of microwave equipment (ODUs, or active radios) are installed generally connected to the same antenna, tuned to the same frequency channel.  One is “powered down” or in standby mode, generally with the receiver active but transmitter muted.  If the active unit fails, it is powered down and the standby unit is activated.  Hot Standby is abbreviated as HSB, and is often used in 1+1 configurations (one active, one standby).
  • Frequency diversity: The signal is transmitted using several frequency channels or spread over a wide spectrum that is affected by frequency-selective fading. Microwave radio links often use several active radio channels plus one protection channel for automatic use by any faded channel. This is known as N+1 protection
  • Space diversity: The signal is transmitted over several different propagation paths. In the case of wired transmission, this can be achieved by transmitting via multiple wires. In the case of wireless transmission, it can be achieved by antenna diversity using multiple transmitter antennas (transmit diversity) and/or multiple receiving antennas (reception diversity).
  • Polarization diversity: Multiple versions of a signal are transmitted and received via antennas with different polarization. A diversity combining technique is applied on the receiver side.

Diverse Path Resilient Failover

In terrestrial point to point microwave systems ranging from 11 GHz to 80 GHz, a parallel backup link can be installed alongside a rain fade prone higher bandwidth connection. In this arrangement, a primary link such as an 80GHz 1 Gbit/s full duplex microwave bridge may be calculated to have a 99.9% availability rate over the period of one year. The calculated 99.9% availability rate means that the link may be down for a cumulative total of ten or more hours per year as the peaks of rain storms pass over the area. A secondary lower bandwidth link such as a 5.8 GHz based 100 Mbit/s bridge may be installed parallel to the primary link, with routers on both ends controlling automatic failover to the 100 Mbit/s bridge when the primary 1 Gbit/s link is down due to rain fade. Using this arrangement, high frequency point to point links (23GHz+) may be installed to service locations many kilometers farther than could be served with a single link requiring 99.99% uptime over the course of one year.

For Further Information

For further information on the range of CableFree wireless networking products:
Please Contact Us

CableFree-contact-us-button